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Two-dimensional steady inviscid flow past an inclined flat plate with a forward-facing 
flap attached to the rear edge is considered for the case when a vortex sheet separates 
from the leading edge of the flat plate and reattaches at the leading edge of the flap, 
with uniform vorticity distributed between the vortex sheet and the body. Solutions 
are found for a particular geometry and a range of values of the vorticity. The method 
used to calculate the flow is an extension of a free-streamline method widely used 
in cases where the velocity is a constant on the separating streamline. 

1. Introduction 
Batchelor (19564 presented a closed wake model for separated flow ofincompressible 

fluid past bluff bodies in the limit of infinite Reynolds number. This model has 
inspired a number of attempts to calculate so-called Prandtl-Batchelor inviscid 
two-dimensional flows past bodies with one or two standing eddies of uniform 
vorticity separated from the exterior irrotational flow by vortex sheets, because of 
the possibility that such flows are or may approximate infinite-Reynolds-number 
limits of Navier-Stokes equations solutions owing to the Prandtl-Batchelor theorem 
(Batchelor 1 9 5 6 ~ )  about the uniformity of vorticity in a region with steady closed 
streamlines in the limit of zero viscosity. However, success to date has been somewhat 
limited. 

Dzugaev (1982) presents an approximate calculation of Prandtl-Batchelor flow 
past a normal flat plate in a channel based on the assumption that the vortex sheet 
strength is a constant, but the details are sketchy and it is not clear to us that the 
solution is consistent. Also, D. I. Pullin (personal communication) reported failure 
to calculate such a flow past a finite flat plate placed normal to a uniform unbounded 
stream. Herwig ( 1982) discusses Prandtl-Batchelor flow over a cavity using asymptotic 
methods, but arrives at  no definite conclusions about the existence of such a flow. 
The procedure that has been used for numerical calculations is to solve two nonlinear 
coupled integro-differential equations for the two unknown functions, the vortex-sheet 
strength and the location of the streamline separating the rotational from the exterior 
irrotational flow. There are, however, difficulties with such an approach. First, the 
integrals in the integro-differential equations are singular and there are problems in 
numerically evaluating them accurately and efficiently. Secondly, as suggested by the 
results of the free-streamline theory for the case of zero vorticity in the region of closed 
streamlines, and as confirmed by the results of this paper, the vortex-sheet curvature 
a t  the separation and reattachment points is infinite. Failure to obtain solutions does 
not therefore mean that solutions do not exist and the existence of Prandtl-Batchelor 
flows in the presence of bodies has remained an important open question in 
high-Reynolds-number incompressible flows (see e.g. Saffman (1981)). It is worth 
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noting that there have been successful calculations of Prandtl-Batchelor flows in the 
absence of physical bodies. For instance, Sadovskii (1971) considers vortex regions 
in a potential stream with a vortex sheet on the boundary and finds a one-parameter 
family of solutions for different jumps of the Bernoulli constant across the vortex 
sheet. Deem & Zabusky (1978) and Pierrehumbert (1980) have calculated steady 
motion past pairs of uniform vortcs rcpions of ( Y ~ u ~ \ I  ;in(! oppositcx \orticIity \vith 110 

vortex sheet imbedded in an irrotational flow. 
In  this paper, we demonstrate numerically the existence of a Prandtl-Bat chclor 

flow for a particular geometry of some aerodynamic interest. The calculation is done 
for two-dimensional inviscid flow past a flat plate with a fonvard-facing flap attached 
to the rear edge (figure 1 ) .  The separating streamline and hence the vortex sheet goes 
from A to B, dividing the fluid-flow region into two: an outer irrotational part 
(region I) and an inner inviscid but rotational part (region 11) with vorticity w .  This 
geometry is of interest in achieving high lift on an airfoil, and has been investigated 
experimentally and calculated theoretically for the case w = 0 (Hurley 1959) using 
Kirchhoff-Helmholtz free-streamline theory. Our method of calculation is very 
different from the integral-equation approach, and is an extension of the function- 
theoretic approach of complex variables which has been used successfully in problems 
where the velocity on the separating streamline is a constant. Our numerical evidence 
suggests strongly that Prandtl-Batchelor flows indeed exist, a t  least for asymmetrical 
geometries of the type considered here upto some critical value of the vorticity w .  
The existence of symmetrical Prandtl-Batchelor flows with two counter-rotating 
eddies remains an open question, and the possibility of generalizing the method used 
here to such flows is presently under consideration. 

2. Mathematical Formulation 
The flow is sketched in figure 1.  In  region I the flow is irrotational and hence we 

may introduce the complex velocity potential w(z) = 0 + iY, where 0 is the velocity 
potential, Y is the stream function and z = x+ iy, with x and y as shown in figure 1 .  
As Z+OO 

i r log z 
w(z)+ Uze-ia+- 

2x ’ 

U ,  a and r being respectively the magnitude of free-stream velocity, the angle of 
attack with respect to plate OA and the clockwise circulation induced at infinity by 
the requirement of finite velocity (Kutta condition) a t  0. There is a stagnation point 
of the exterior irrotational flow a t  P on the plate OA, and it can be shown (Tanveer 
1983) that there are no other stagnation points besides P and 0. The flow is assumed 
to separate tangentially at A and to reattach tangentially at B. ABOA is a streamline 
on which Im w = 0 without any loss of generality. I n  region I1 the stream function 
satisfies 

and on the boundary AOBA 

The location of the vortex sheet AB is determined by the pressure condition 

V2Y = w ,  P a )  

Y=O. ( 2 b )  
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FIGURE 1. Sketch of flow under consideration. AOB denotes the plate-flap combination, 
while the streamline joining A to B is the vortex-sheet location. 

FIGURE 2. The t-plane. 

where dwldz and V Y are evaluated on the vortex sheet from the outside and the inside 
respectively. q2 is a constant which is twice the jump in the Bernoulli's constant across 
the boundary between regions I and 11. 

We consider the conformal map t(z) of the exterior region I into the interior of the 
unit semicircle as shown in figure 2. A ,  B ,  0 and P in the x-plane correspond to 1 ,  
- 1 ,  0 and t, in the t-plane, where t, is an unknown to be determined. We regard 
5 = dw/dz as a function of t  and introduce the analytic function a(t) defined by 

whereO<arg( t )<x ,  -n<arg(t ,- t) ,<Oand -n<arg ( l - tp t ) ,<Ofor t ino ron  
the unit semicircle. By considering the argument of both sides of (4) and assuming 
the continuity of 5, we conclude that Im (a) = 0 on the real diameter of the unit 
semicircle. From the Schwarz reflection principle it follows that 

( 5 )  Q(t) = a, +a, t + a2 t2 + . . . , 
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with a,,, a,, . . . all real and Q analytic in the interior of the unit circle. Now, introduce 
the conformal map, T(t)  defined by 

(6) 

If T = T, denotes the image of x = CO, then the dipole and circulation present at 
infinity in the physical plane as in (1) implies that 

T = -$(t + l / t ) .  

where M is the complex magnitude of the dipole a t  T = T,. Using (6) and (7) we easily 
conclude that 

_-  dw 1-t2 4Mtk 4m-k - iI'(t,-i,)(I-t,i,) 
dt 2 [(t-t,)2(l-tt,)2 (t-i,)2(l-ti,)2 7c(t-t,)(t-i,)(1-ttm)(1-tim) ' 

(8) 

where t ,  is the image of z = co and is related to T, through (6). From (4) and (8) 
we obtain 

1 + -- 

From the knowledge of the velocity at infinity, we have the condition 

Also, from the requirement that dz/dt has no residue at t = t,, which is necessary 
for the z - t t  mapping to be one-to-one, we have 

t, 1 
1-tpt, t P -t, 

+-- 
The geometric constraints are 

~ 

f $dt = -11, 

where dzldt is given by (9). Further, the stagnation points at P and 0 imply that 
dwldt = 0 a t  t = t, and t = 0. This means that 

4Mt: 4 E t k  - ir(t,-i,)(l-t,i,) + 
(tp- t,)2 (1 - t, t,)2 (tp-i,)2 (1 -t, i,), - 7c(tp - t,) (tp- i,) (1 -t, t,) (1 -t, i,) ' 

(14) 

if(t,-i,) (l-t,  i,) 
4M+4M= Xt, t, (15) 

If Q(t) were known inside the unit semicircle, then (lo)-( 15) would constitute eight 
real relations between the twelve real quantities I', q, t,, Re t,, Im t,, Re M ,  Im M ,  
l,, l,, ,8, U and a. If we non-dimensionalize all our variables using U and l,, we are 
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left with ten non-dimensional unknowns and eight real equations. There would then 
be a two-parameter family of solutions for the flow in the region I and its boundary. 
However, Q(t )  cannot be specified a t  will but has to be determined so that the interior 
flow in region I1 satisfies (3) on the vortex sheet. It will be seen later that the 
magnitude of the constant vorticity w ,  provided it is not too large, together with two 
of the parameters, say a and /3, determine a(t) and all the other constants. 

For the special case w = 0, region I1 is stagnant and we have a free-streamline flow 
with the pressure condition (3) reducing to constancy of velocity on the free 
streamline. Comparing the magnitudes of both sides of (4) on the circumference of 
the unit semicircle, we deduce that Reln = 0 on the circumference. Using the 
expansion ( 5 ) ,  we conclude that Q ( t )  = 0. For this case, the problem is completely 
determined by specification of the parameters a and p. Hurley (1959) obtained these 
solutions by a quite different procedure and presents the details of the two parameter 
family of solutions. 

For the general case with w =l= 0, the determination of ln( t )  is more complicated, 
since the velocity in region I1 has to be taken into account in the pressure condition 
(3). For a vortex-sheet location corresponding to t = eie for 8 e  [0, n], (3)-(5) imply 

a, + a, cos 8 + a2 cos 28 + . . . = 4 In (1 + ( V Y ) 2 / q 2 ) .  (16) 

The problem now reduces to determining the right-hand side of (16) and its Fourier 
cosine expansion with respect to 8 in terms of a,, a,, . . . and the parameters. I n  53 
we describe how the inner velocity and hence the right-hand side of (16) is determined 
for given a,, a,, ... and r, q,  t,, t , ,  M and I,. 

3. Determination of the velocity in region I1 on the vortex sheet 
q,  t, ,  t,, M ,  I,, we integrate (9), using z(1) = -Zl, to 

determine z(eie), the location of the vortex sheet, and therefore the boundary of 
region 11. We are then left with the problem of computing the velocity IVY1 on the 
free streamline, where Y satisfies (2a, b ) .  Since determination of the velocity on the 
vortex-sheet boundary of region I1 by the usual finite-difference or finite-element 
schemes in the physical plane is likely to be inaccurate in view of the infinite curvature 
expected at A and B ,  we employ conformal mapping of region I1 into a more suitable 
region. It is convenient to separate Y into a particular solution Yp and a harmonic 
function Yh. Since w is a constant, this can be easily done. Yh remains a harmonic 
function in the conformally transformed plane. Then the problem is reduced to 
determining the normal derivative of a harmonic function from given boundary data 
in a ‘nice’ domain. For the purpose of mapping, we introduce the complex variable 
zi = -x+iy defined in region I1 of the physical plane.? It is convenient to take the 
particular solution Y, defined by 

For given a,, a,, ... and 

w-’Yp = i(Imzi)2--;t(Imzi) (Rezi)tan,8 

since this vanishes on the solid boundaries. The harmonic function Yh in the 
decomposition Y = Y,, + Y-’, satisfies Y,, = - Yp on the boundary. 

Consider the conformal map Q(zi) that maps the zi plane interior of the boundaries 
AOBA into the unit semicircle (figure 3 ) ,  such that B is mapped to - 1 ,  A is mapped 
to +1 and 0 to Q, on the real axis. The value of Q, is fixed automatically in the 

t This unconventional choice of complex variable allows region I1 t o  be mapped to  the interior 
of the  semicircle of figure 3. 
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FIGURE 3. The &-plane. 

numerical conformal mapping procedure to be described later. The vortex sheet AB 
is mapped to the semicircular boundary. The details of the mapping xi(&) will be 
discussed in $4. We now consider Yh as a harmonic function in the &-plane which 
satisfies boundary conditions as follows : 

Yh(ei@) = - Yp(zi(ei@)), (18) 

where #E [O,x] and Q = pei@ in the &-plane. From (17) ,  Yp is zero on the real 
diameter, and so for QE[- 1 , 1 ]  we have 

ul,(Q) = 0. (19) 

Using the Schwarz reflection principle, we extend the domain of existence of Yh to 
the entire unit &-circle with boundary condition (18) applied to  # E [0,  x], while 

Yh(e'$) = - Yh(eTi$ ) (20) 

extends the boundary data to the lower half segment of the circumference where 
# E [ -x, 01. On the vortex sheet, the velocity IVY1 equals the normal derivative of 
Y in the zi plane. Now, the outward normal direction on the vortex sheet in the xi 
plane corresponds to  the radially outward direction on the circumference of the unit 
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semicircle in the Q-plane. Therefore on Q = ei6 the magnitude of the velocity is given 
bN 

I m ( Q 3 )  R e ( Q 3 )  
-$tan/3 Im zi 

~ V Y I  = 1 - 1  dQ (>+A) aY aY = Imzi 
dzi ap ap 

Now (18) and (20) determine the harmonic function Yh on the boundary of the unit 
circle from which the Fourier coefficients of the following expansion are determined : 

+co 
Yh(ei6) = $,eik4. 

-co 

It is easily seen that the normal derivative 

Using zi(Q) and Idzi/dQl as determined in $4, (23) provides a complete determination 
of IVY1 in (21) in terms of 9. The apparent singularities at 9 = 0 and .n are actually 
removable since Y and therefore a Y/ap  are odd 2.n-periodic functions of q5 and hence 
vanish at 0 and .n. It is to be noted that in (16) we need I(VY)12 as a function of 0 
and not 9, as given by (21). However, for each 8, (9) locates ( x ( 0 ,  y(0)) on the physical 
vortex sheet and therefore the corresponding position in the zi plane. The conformal 
map &(zi) provides the relation #(zi(0)) needed to  determine the velocity as a function 
of 0. The details of this correspondence and its usage are discussed in $ 5 .  

4. Mapping into a semicircle in the Q-plane 

As mentioned before, we wish to find Q(zi) that maps the zi plane into a semicircle 
with A mapped to  + 1, B to - 1 and 0 to some suitable point Qo on the real diameter 
of the Q-plane. Initially, we carry out a series of explicit transformations starting with 
the zi plane and finally ending up with a geometry that is close to a semicircle. With 
choice of appropriate branches, the transformations are 

W,(z,) = (z;/"sJ/E, (24) 

where s1 = +( 1 - 2 t / p )  and E = $( 1 + Z;/p). r is chosen to be the radius of the circular 
arc shown in dotted line in figure 4(b), which together with the real axis encloses our 
region of interest in the W, plane. The angle between the circular arc and the real 
axis is $3. Figures 4 (u-c) show the approximate shapes of the region of interest after 
each of the transforms (24)-(26). The transformation (26) converts the circular arc 
and the real axis of figure 4 ( b )  into a unit semicircular boundary If r sin $S is chosen 
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FIQURE 4. W,, W, and W, planes shown in (a), ( b )  and ( c )  respectively. r denotes the radius of the 
circular arc that, together with real axis, encloses the geometry of interest in (b) .  $13 is the angle 
between the circular arc and the real axis. 

close to 1,  the transformation (26) gets rid of the large curvature of the boundary 
of the region of interest in the W, plane near the real axis. The choice of r and 6 is 
made so as to make the shape of the boundary in the W, plane as nearly semicircular 
as possible. 

Consider now the function W,(Q) that maps a semicircle into this nearly semicircular 
region with the origin 0 of the Q-plane mapped to 0 in the Jc plane, - 1 to - 1 and 
+ 1 to + 1.  We realize that W,(Q) also maps the unit circle about the origin in the 
Q-plane into the nearly circular geometry of the W, plane formed by extending the 
original nearly semicircular region through reflection on the real axis. Henceforth, 
the nearly circular region of the W, plane will be called the extended W, region. If 
W, = Rweie and Q = ei#, --x < v, 4 < R ,  characterize corresponding points on the 
boundary of the extended W, region and the unit circle respectively, then the integral 
equation satisfied by v ( 4 )  is 
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where the integral is in the principal-value sense. This equation, commonly known 
as Theodersen's integral equation, is very easily solved numerically in Fourier space 
by an iterative technique as discussed by Henrici (1979). It requires two Fourier 
transforms and one R, evaluation per iteration. Once the iterations converge, we 
obtain the complex Fourier series for log(R,(v(q5))) which allows us to find the 
coefficients of the Fourier cosine series in q5 as well, since it is an even periodic function. 
Thus we can write 

(28) 
m 

log (RW(v(q5))) = X bn cosnq5, 
0 

from which it follows that 

since the left-hand side of (28) is the real part of the analytic function log ( W,/Q) 
evaluated at  the boundary of the unit circle. Thus we have arrived at  a power-series 
expression to describe the mapping function WJQ) that maps the circle in the &- 
plane to the extended W, region and therefore the semicircle into the original near- 
semicircular region of the W, plane. Inverting the relations in (24)-(26) and using 
(29), we arrive at  z,(Q), from which Q(zi) is known in principle. The velocity is 
therefore determined from the inside of the vortex sheet for a given vortex-sheet 
location. Equating the coefficients of cosn6 in (16), the coefficients a,, a,, ... are 
determined. 

Here, we justify the mapping of region I1 into a semicircle to determine the velocity 
on the vortex sheet. The infinite curvature of the separating streamline and infinite 
velocity gradient on the plate (or the flap) at A (or B ) ,  as will be seen in $7 ,  leads 
to numerical inaccuracies if a direct scheme (such as finite differences) is used to 
calculate the flow in region I1 on the vortex-sheet boundary. The commonly used 
technique of conformal mapping into a circle does not get rid of the problem either, 
because the boundary data assumed by the harmonic decomposition U,, as introduced 
in $3, is not a smooth function of the angle on the circle. Mapping into a semicircle 
with the separation and reattachment points at the two ends of the real diameter, 
as we have done, gets rid of the problem of accurately calculating the velocity close 
to the separation and reattachment points. The infinite velocity gradients in the 
physical plane present no obstacles, since the numerically calculated U,, Yp ind 
therefore the velocity seem to be smooth functions of $ on the &-circle. Further, the 
numerical calculations suggest strongly that the velocity on the boundary is a smooth 
function of 6 as we11 in the interval [0, XI. Smoothness of the interior velocity as a 
function of 6 implies that 51, calculated by using (16), is analytic at the boundary 
of the unit circle. This smoothness of Y and the velocity and the analyticity of SZ 
can be expected from further plausibility arguments (Tanveer 1983). Thus the 
numerical calculation of velocity in region I1 is easily facilitated even in the 
neighbourhood of A and B by using the conformal mapping into the Q-plane as 
described. 

5. Numerical procedure 
We use an iterative scheme to find solutions to our equations. We start with an 

initial guess of N coefficients a,, a,, ..., aN-l and obtain an approximate Q(t )  by 
truncating (5 ) .  For small w the guess for SZ and hence these N coefficients is zero. For 
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bigger values of w we use values of the coefficients obtained from the converged 
solution for slightly smaller w. In the following we describe the procedure used to find 
the (n+ 1)th iterate given the nth iterates a:, a?, ..., ak-,  and therefore Bn(t). 

We use (10)-(15) to determine r, E , ,  q, M ,  t, and t, consistent with D = On, where 
U ,  E l ,  a and /3 are considered known and fixed. Newton iteration is used for 
that purpose. Equation (9) then determines z(8) = x(8) +iy(8) and hence 
zi(8) = -x(@)+iy(t?) on the vortex sheet for N, points where Ok = ( k -  l)7c/(Nl-l), 
k = 1, 2, ..., N,, and N ,  is chosen of the form N ,  = 1 +2NE, where 1 is any positive 
integer. A subset of these 8-values of the form O k j =  (((2j-1)1+1)-1)7c/(N1-1) 
obtained for k = (2j-l)Z+l f o r j  = 1,  2, ..., N are the 8-values at which velocities 
will be calculated and (16) used to find the N coefficients ai. A little simplification 
shows that Okj  = (j- I )  n / N +  7c/2Nand are therefore points at  which the Ncalculated 
velocities can be fast-Fourier-transformed to obtain the Fourier cosine series of (16). 
We avoid calculating velocities a t  8 = 0 and 7c, where (21) has numerically awkward 
removable singularities. Now, we find the images Rw(vk) ei"k in the W, plane for these 
N ,  points in the zi plane, using (24)-(26). The U-values in the W, plane image of the 
subset of zi points characterized by the angles 8, are denoted by v k j .  Reflection on 
the real axis provides us with a set of N, - 2 new points on the near-circular boundary 
of the extended W, region. All together, we then have 2N, -2 points at which RJv,), 
v k  are known. For large enough N, this provides a very accurate description of the 
function R,(v) for arbitrary v through cubic spline interpolation. We then take N3 
points on the unit circle of the extended &-plane, evenly spaced in the angular variable 
9, and carry out the process of solving Theodersen's integral equation (27) exactly 
as described by Henrici (1979). In  the process, we obtain the first +N3 b ,  coefficients 
in (28). The b,  coefficients define W,(Q) in (29). We then start with N2 uniformly spaced 
points on the circumference of the unit Q-circle with Q ,  = ezxi(m-l)/Nz for m = 
1 , 2 ,  ..., N,.  We calculate W,(Q,), zi( W,(Q,)) using (24)-(26) and (29) at those points. 
Using (17) ,  (18) and (20) we calculate 'P, at those boundary points and use them in 
(22) and (23) to find Cl'Ph/i3p at N, points. At  the ;N2- 1 points that lie entirely in 
the upper-half Q semicircular boundary we calculate dz,/dQ using (24)-(26) and (29). 
These, together with values of other terms in (21) already calculated, provide the 
velocities at  the $N2 - 1 points on the upper-half semicircle. If v,, m = 1,2 ,  . . . , +N, - 1 ,  
denote the angular positions of the images of those &-points in the W, plane, we use 
these to interpolate velocities at the N points vkj through cubic splines. Because of 
the correspondence of vkj with N uniformly spaced-out points in the $-variable as 
discussed earlier, we arrive at the velocities from the inner side of the vortex sheet 
at  the physical z-locations corresponding to N equispaced points in the &variable. 
This is exactly as desired, since (16) allows calculation of the (n+l ) th  iterate for 
a,, a,, ..., aN-l by fast Fourier transforms as in Henrici (1979). 

Thus we have a full description of the iteration scheme. It may be noted that the 
use of spline interpolation in the variable v is suitable because, as argued in 94, the 
velocity is a smooth function of q5 and 8. 

6. Numerical results and discussion 
The object of the present work is to demonstrate the existence of Prandtl-Batchelor 

flows, and we only present results here for the case p = 1.5 rad, a = 0.3 rad, although 
solutions do exist for a range of /? and a. Future calculations for other values of 
parameters would be dictated by practical interest and necessity. It appears that for 
these values /? and a, solutions exist when the vorticity in region I1 is in t'hp Finn- 
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-0.0000004 
- 0.000000 1 
- 0.0000003 
- 0.000000 1 
- 0.0000002 

0.000000 0 
- 0.000000 2 

0.0000000 
- 0.0000002 

0.000000 0 
-0.000000 1 

0.0000000 
0.000000 1 
o.o0ooooo 

WlJU = 10 

4.243 160 
2.097 837 
0.157801 2 
0.449 1662 

-0.2466787 
- 0.193 723 0 

0.419017 1 
0.404452 7 
0.200601 6 

-0.053981 2 
-0.138 825 9 
- 0.026078 6 

0.020891 1 
0.015229 2 
0.002 286 0 

-0.001 7057 
-0.0012923 
-0.0002766 
- 0.000007 2 

0.0000350 
-0.0000109 

0.0000058 
- 0.000006 3 

0.000001 5 
- 0 .OOO 008 8 
- 0.000002 7 
- 0.000006 6 
-0.0000014 
-0.000004 1 
- 0.000 000 8 
- 0.000002 9 
- 0.OOOOoo 7 
-0.000002 1 
- 0.000000 5 
-0.000001 6 
- 0.000000 4 
-0.0000013 
- 0.000 000 3 
-0.0000010 
- 0.000000 2 
-0.0000008 
-0.000000 1 
- 0.000 000 6 
-0.000000 1 
-0.0000004 
-0.00oOoo 1 
- 0.000 000 3 
-0.000000 1 
-0.0000002 

0.0000000 
-0.0000001 

0.000Oooo 

TABLE 1. Values of quantities of interest for four different values of vorticity, 
each for a = 0.3 rad and p = 1.5 rad 
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FIQURE 5. Streamlines for: (a) o l J U  = 8 ,  a = 0.3 rad, /3 = 1.5 rad; ( b )  wlJU = 10, a = 0.3 rad, 
/3 = 1.5 rad. Streamlines are drawn at intervals of 0.04 for Y / U l , .  

0 < wl,/U < 10. The iteration procedure described in $ 5  was used to solve for Q( t ) .  
When the successive calculated values of the coefficients a,, a,, . . . , aN-, -and other 
constants were within lo-* of each other, convergence was assumed. Initially, in our 
calculations, we used N ,  = 385, N = 64, N ,  = 4096 and N3 = 512. Changing each of 
N,,  N ,  N ,  and N3 made little difference in the converged numerical values. For 
instance when N ,  = 385, N = 48, N2 = 2048 and N3 = 512, the calculated values of 
the constants r/l, U ,  q / U ,  etc. and the values that SZ assumed on a host of different 
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points on the t-circle were identical with the originally obtained values upto seven 
significant figures. Thus we conclude that the calculations have a seven-digit 
accuracy. 

The values of different quantities obtained from calculation are presented in table 1 
for four different values of vorticity w .  The streamlines are shown in figures 5 ( a )  
and ( b )  for the cases o l J U  = 8 and wlJU = 10. The results suggest that the vortex 
sheet moves outwards, and hence the value of 1, needed to assure reattachment a t  
B increases with wl , /U .  The extensive use of fast Fourier transforms and spline 
interpolation avoided the use of any integrations in the calculation of the velocity 
in region 11, and therefore we believe that the method is comparatively very efficient 
compared to the integro-differential equation techniques used by others who tried 
calculation of these types of flows. For each value of wl , /U ,  the entire calculation 
took between 10 and 20 min of CPU time on a VAX 111750. We obtained numerical 
convergence in our iteration scheme upto wZ,/U = 10. For larger values the rate of 
convergeqce slowed down considerably, suggesting that there was a critical value of 
o lJU above 10 for which there will be no convergence in the iteration scheme. We 
are unable to explain the significance of a critical value of w .  For wlJU = 8 the method 
needed 8 iterations to produce a seven-figure-accurate result. A different set of values 
for N, ,  N ,  N ,  and N3 made small differences in the convergence rates, provided that 
those integer values were large enough. 

7. Nature of singularities 
In  this section we point out the nature of the singularities of the flow field a t  the 

separation and reattachment points A and B .  First, we consider the exterior flow field. 
If we expand (4) around t = 1,  taking D to be analytic as was justified earlier, we 
obtain 

dw 
- dz = E l +  k2(t  - 1 ) + k,(t - 1 )2 + . . . , 

where k,, k ,  and k, are all real constants. A similar expansion is valid a t  t = - 1, with 
the factor t - 1 replaced by t + 1 ,  and the constants k,, k ,  and k ,  are each proportional 
to eiB. If we expand (9) around t = 1 and integrate under the assumption that the 
term within the square brackets in (9) is non-zero (justified in Tanveer 1983), we find 
that 

2 + 1, = p,( t  - 1 ) 2  + p,( t  - 1)s + . . . , (31) 

where p ,  and p ,  are real. A similar expression is valid a t  t = - 1, with the factor t - 1 
replaced by t + 1,  the constants p ,  and p ,  are proportional to epip and the term I, is 
replaced by l,epip. Evaluating the real and imaginary parts of (31) for t = eie, and 
eliminating 8, we find that in the neighbourhood of A on the separating streamline 

y = yl ( l ,+x)~+y, ( l ,+x)~+ ..., (32) 

where y1 and y, are real constants. A similar equation is valid a t  B ,  where y and 1, + x 
have to be replaced by the distances from B in the direction perpendicular to and 
along the flap OB respectively. From the numerically determined values, it was found 
that y1 was non-zero a t  both A and B in the range of values of vorticity w for which 
the calculations were made. Evaluating (30) and (31) with t = eis, it  follows after some 
algebra that Idwldzl. and hence the pressure, is a smooth function of the distance from 
A along the separating streamline. The same smoothness is found at  B.  However, 
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from (30), (31) and similar equations in the neighbourhood of B,  it  follows that the 
pressure gradient tends to infinity as A (or B )  is approached along the plate (or the 
flap). From the numerical values of the coefficients of S2 and the other constants, it 
was found that the pressure gradient was favourable on the plate a t  A and 
unfavourable on top of the flap at B. 

Now we consider the flow-field singularities in region I1 a t  A and B. From (22) and 
the fact that Yh is a real odd 2.n-periodic function of 4, it  follows that at an anterior 
point pei$ in the Q-plane 

00 

Y, = Z ck p” sin h$, (33) 
1 

where the ck are all real and related to the coefficients @k in (22). From (17), (33) and 
from the expansion of IdzJdQl and zi(&) near Q = 1 and - 1 ,  obtained from (24)-(26) 
and (29), we find that the magnitude of the velocity on the plate OA or the flap OB 
in the neighbourhood of A or B is given by 

IVY1 = vo+ vld+ ..., (34) 

where V, and V, are constants and s is the distance from A or B, as the case may 
be. It was found from the numerical values of the coefficients and the constants in 
(22), (24)-(26) and (29) that in the range of w for which calculations were made, V, 
was always positive at both A and B, except for the case when w = 0, for which the 
velocity in region I1 is identically zero. Thus, in region 11, there is an adverse infinite 
pressure gradient on the plate a t  A and an infinite favourable pressure gradient on 
the flap a t  B.  

8. Conclusion 
We have presented calculations of a so-called Prandtl-Batchelor flow for flow past 

a flat plate with a flap attached at its rear edge. This is to our knowledge the first 
such fully consistent calculation of a Prandtl-Batchelor flow past a physical body. 
For given angle of attack and angle between the plate and the flap, there exists a 
one-parameter family of such flows, depending on the assumed vorticity in the 
recirculating region of the flow. If the flow is the zero-viscosity limit of a Navier-Stokes 
solution, it is expected that only one such value of the vorticity will be consistent 
with the fitting of boundary layers. This question appears to be rather difficult and 
is not addressed this paper. Alternatively, the ratio 1 2 / 1 1  over a certain range could 
be supposed to be given in addition to the angles a and /3, and the value of w could 
be regarded as determined by the requirement that the streamline that separates a t  
A reattaches at B. 

Our method provides an accurate and reasonably efficient method of calculation 
of two dimensional Prandtl-Batchelor flows that incorporate possible singularities 
at the separation and reattachment points. The procedure is general and could 
possibly be applied to other two-dimensional geometries of interest. 
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